Criteria for Toeplitz Operators on the Sphere

نویسنده

  • Jingbo Xia
چکیده

Let H(S) be the Hardy space on the unit sphere S in C. We show that a set of inner functions Λ is sufficient for the purpose of determining which A ∈ B(H(S)) is a Toeplitz operator if and only if the multiplication operators {Mu : u ∈ Λ} on L(S, dσ) generate the von Neumann algebra {Mf : f ∈ L∞(S, dσ)}.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Toeplitz operators on Segal–Bargmann type spaces

We consider Toeplitz operators with symbols enjoying a uniform radial limit on Segal–Bargmann type spaces. We show that such an operator is compact if and only if the limiting function vanishes on the unit sphere. The structure of the C∗-algebra generated by Toeplitz operators whose symbols admit continuous uniform radial limits is also analyzed.

متن کامل

Toeplitz Operators and Hankel Operators on the Hardy Space of the Unit Sphere

The object of this present paper is to study Toeplitz operators and Hankel operators on the Hardy space of the unit sphere S in C through the generalized area integral of harmonic functions on the unit ball B in C. In particular we consider the question of when the product of two Toeplitz operators is a compact perturbation of a Toeplitz operator. It follows from a theorem in [DJ] that T,T can ...

متن کامل

Commuting Toeplitz Operators with Pluriharmonic Symbols

By making use of M-harmonic function theory, we characterize commuting Toeplitz operators with bounded pluriharmonic symbols on the Bergman space of the unit ball or on the Hardy space of the unit sphere in n-dimensional complex space.

متن کامل

Singular Integral Operators and Essential Commutativity on the Sphere

Let T be the C∗-algebra generated by the Toeplitz operators {Tφ : φ ∈ L∞(S, dσ)} on the Hardy space H(S) of the unit sphere in C. It is well known that T is contained in the essential commutant of {Tφ : φ ∈ VMO∩L∞(S, dσ)}. We show that the essential commutant of {Tφ : φ ∈ VMO∩L∞(S, dσ)} is strictly larger than T .

متن کامل

Toeplitz operators in TQFT via skein theory

Topological quantum field theory associates to a punctured surface Σ, a level r and colors c in {1, . . . , r− 1} at the marked points a finite dimensional hermitian space Vr(Σ, c). Curves γ on Σ act as Hermitian operator T γ r on these spaces. In the case of the punctured torus and the 4 times punctured sphere, we prove that the matrix elements of T γ r have an asymptotic expansion in powers o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010